Abstract

The thermodynamic entropy of coarse-grained (CG) models stands as one of the most important properties for quantifying the missing information during the CG process and for establishing transferable (or extendible) CG interactions. However, performing additional CG simulations on top of model construction often leads to significant additional computational overhead. In this work, we propose a simple hierarchical framework for predicting the thermodynamic entropies of various molecular CG systems. Our approach employs a decomposition of the CG interactions, enabling the estimation of the CG partition function and thermodynamic properties a priori. Starting from the ideal gas description, we leverage classical perturbation theory to systematically incorporate simple yet essential interactions, ranging from the hard sphere model to the generalized van der Waals model. Additionally, we propose an alternative approach based on multiparticle correlation functions, allowing for systematic improvements through higher-order correlations. Numerical applications to molecular liquids validate the high fidelity of our approach, and our computational protocols demonstrate that a reduced model with simple energetics can reasonably estimate the thermodynamic entropy of CG models without performing any CG simulations. Overall, our findings present a systematic framework for estimating not only the entropy but also other thermodynamic properties of CG models, relying solely on information from the reference system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.