Abstract
Accurate tumor volume delineation is a crucial step for disease assessment, treatment planning and monitoring of several kinds of cancers. However, this process is complex due to variations in tumors properties. Recently, some methods have been proposed for taking advantage of the spatial and spectral information carried by coupled modalities (e.g., PET-CT, MRI-PET). Simultaneously, the development of attributebased approaches has contributed to improve PET image analysis. In this work, we aim at developing a coupled multimodal / attribute-based approach for image segmentation. Our proposal is to take advantage of hierarchical image models for determining relevant and specific attribute from each modality. These attributes then allow us to define a unique, semantic vectorial image. Sequentially, this image can be processed by a standard segmentation method, in our case a random-walker approach, for segmenting tumors based on their intrinsic attribute-based properties. Experimental results emphasize the relevance of computing region-based attributes from both modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.