Abstract

Hierarchical flower-like TiO2 microspheres (FMS) and TiO2 nanorice (NR) were obtained, respectively, by controlling the dosage of Ti precursor via a simple hydrothermal process. Flower-like TiO2 microspheres consist of nanopetals grown from the center radially, the nanopetals are about several nm in average thickness, and each nanopetal has a thinned tip with an average size of 15 nm. The unique hierarchical TiO2 microspheres with large surface area (118.6 m2 g−1) suggested its potential application in dye-sensitized solar cells (DSSCs). The power conversion efficiency of FMS-based DSSCs (9.58%) is much higher than that of NR-based DSSCs (7.13%), which could be ascribed to its excellent light-scattering and dye absorption ability, shorter electron transport pathway and longer electron recombination time derived from the thin thickness and large specific surface area of nanopetals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.