Abstract
Searching for semiconductor heterostructures with efficient photocatalytic activity and selectivity towards CO2 reduction is highly desired to lessen the speedy depletion of energy resources. Herein, a hierarchical flower-like ternary layered double hydroxides (LDHs) of NiFeCr-LDH-(PCN/CeO2-15%) was fabricated via in situ introduction of polymeric carbon nitride/cerium oxide (PCN/CeO2) and applied for photocatalytic CO2 reduction. The hierarchical flower-like heterostructure makes available more exposed surface-active sites to substantially enhance the light-harvesting capability. The charge transfer among the individual components stimulates the separation of photogenerated charge carriers and reduces their recombination rate, thus promoting the photocatalytic conversion towards CO2 reduction. The as-prepared NiFeCr-LDH-(PCN/CeO2-15%) heterostructure exhibits an exceptional photocatalytic CO formation rate of 52.1 μmol g−1 h−1, which is 7.1, 2.9, and 4.6 times than that of pristine PCN, PCN/CeO2, and pure NiFeCr-LDH, respectively. The magnificent photocatalytic activities are verified by the XPS and HRTEM evaluations, which demonstrate strong electronic interactions amongst heterostructure components. The present work not only achieves enhanced photocatalytic performance of NiFeCr-LDH-(PCN/CeO2-15%) heterostructure but also could provide a new approach to explore different LDHs-based semiconductors towards efficient CO2 reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.