Abstract
The concept of high entropy is considered promising to enhance electromagnetic wave absorption properties. However, preparing high-entropy sulfides with unique structures for high-performance electromagnetic absorption remains a challenge. In this study, hierarchical porous flower-like dual-phase sulfides were designed with increased entropy and fabricated using a versatile approach. The porous flower configuration enhanced the scattering of electromagnetic waves and the impedance-matching characteristics. Additionally, the effect of high entropy induced diverse defects that were favorable for electromagnetic wave dissipation in dual-phase sulfides. The design of the dual-phase structure generated strong interface polarization, and the composition and content of the phases exhibited clear changes with the increase in the number of metal elements. Interestingly, apparent lattice distortions, defects, and shear strains were directly observed near the dual-phase interface of millerite (102) and pyrite (220) planes, facilitating the occurrence of dipole polarization. Consequently, the developed dual-phase high-entropy sulfide exhibited outstanding microwave absorption properties. The minimum reflection loss value of (FeCoNiCuZn)S was -45.8 dB at a thickness of 1.5 mm, and the optimal effective absorption bandwidth was 3.8 GHz at a thickness of 1.4 mm thickness. Thus, the design of high-entropy sulfides brings meaningful guidance for tuning the wave absorption properties in sulfides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.