Abstract

Given the importance of peptide-mediated protein interactions in cellular processes, protein-peptide docking has received increasing attention. Here, we have developed a Hierarchical flexible Peptide Docking approach through fast generation and ensemble docking of peptide conformations, which is referred to as HPepDock. Tested on the LEADS-PEP benchmark data set of 53 diverse complexes with peptides of 3-12 residues, HPepDock performed significantly better than the 11 docking protocols of five small-molecule docking programs (DOCK, AutoDock, AutoDock Vina, Surflex, and GOLD) in predicting near-native binding conformations. HPepDock was also evaluated on the 19 bound/unbound and 10 unbound/unbound protein-peptide complexes of the Glide SP-PEP benchmark and showed an overall better performance than Glide SP-PEP+MM-GBSA and FlexPepDock in both bound and unbound docking. HPepDock is computationally efficient, and the average running time for docking a peptide is ∼15 min with the range from about 1 min for short peptides to around 40 min for long peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.