Abstract

The analysis of complex networks has revealed patterns of organization in a variety of natural and artificial systems, including neuronal networks of the brain at multiple scales. In this paper, we describe a novel analysis of the large-scale connectivity between regions of the mammalian cerebral cortex, utilizing a set of hierarchical measurements proposed recently. We examine previously identified functional clusters of brain regions in macaque visual cortex and cat cortex and find significant differences between such clusters in terms of several hierarchical measures, revealing differences in how these clusters are embedded in the overall cortical architecture. For example, the ventral cluster of visual cortex maintains structurally more segregated, less divergent connections than the dorsal cluster, which may point to functionally different roles of their constituent brain regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call