Abstract

The notion of an evolutive hierarchical system proposed in this paper is a mathematical model for systems, like organisms, with more or less complex objects. This model, based on category theory, retains the following characteristics of natural systems: they have an internal organization consisting of components with interrelations; they maintain their organization in time though their components are changing; their components are divided into several levels corresponding to the increasing complexity of their own organization, and the system may be studied at any of these levels (e.g. molecular, cellular...). The state of the system at a given instant is modeled by a category whose objects are its components, the state transition by a functor, a complex object by the (direct) limit of a pattern of linked objects (which describes its internal organization). The properties of limits in a category make it possible to ‘measure’ the emergence of properties for a complex object with respect to its components, and to reduce the study of a hierarchical system to that of its components of the lowest degree and their links. Categorical constructions describe the formation of a hierarchical evolutive system stepwise, by means of the operations: absorption of external objects, destruction of some components, formation of new complex objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.