Abstract

We present a theoretical approach to study nonequilibrium quantum heat transport in molecular junctions described by a spin-boson type model. Based on the Feynman-Vernon path integral influence functional formalism, expressions for the average value and high-order moments of the heat current operators are derived, which are further obtained directly from the auxiliary density operators (ADOs) in the hierarchical equations of motion (HEOM) method. Distribution of the heat current is then derived from the high-order moments. As the HEOM method is nonperturbative and capable of treating non-Markovian system-environment interactions, the method can be applied to various problems of nonequilibrium quantum heat transport beyond the weak coupling regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.