Abstract

Currently, sensor energy assembly in wireless sensor networks is limited, and clustering methods are not effective to improve sensor energy consumption rate. Thus, a hierarchical energy-saving routing algorithm based on fuzzy logic was constructed by considering three aspects: residual energy value, centrality, and distance value between nodes and base stations. The remaining sensor nodes selected by fuzzy logic algorithm have a longer time to live and greater residual energy than those selected by low-power adaptive clustering hierarchical protocol algorithm, fuzzy unequal clustering algorithm, and fuzzy logic cluster head election algorithm. For network life cycle, the number of rounds in which the first dead node appears, in descending order, is studied: energy-saving routing algorithm (400 rounds) > new geographic cellular structure algorithm (300 rounds) > virtual grid based dynamic routes adjustment algorithm (100 rounds). Under the same experimental round, energy-saving routing algorithm’s remaining energy curve always reaches its maximum. The energy-saving routing algorithm by fuzzy logic constructed by this research institute can significantly improve network energy utilization, which has certain reference value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call