Abstract

In this study, a hierarchical structured direct yaw-moment control (DYC) system, which consists of a main-loop controller and a servo-loop controller, is designed to enhance the handling and stability of an in-wheel motor driven driven electric vehicle (IEV). In the main loop, a Fractional Order PID (FO-PID) controller is proposed to generate desired external yaw moment. A modified Differential Evolution (M-DE) algorithm is adopted to optimize the controller parameters. In the servo-loop controller, the desired external yaw moment is optimally distributed to individual wheel torques by using sequential quadratic programming (SQP) approach, with the tire force boundaries estimated by Unscented Kalman Filter (UKF) based on a fitted empirical tire model. The IEV prototype is virtually modelled by using Adams/Car collaborating with SolidWorks, validated by track tests, and serves as the control plant for simulation. The feasibility and effectiveness of the designed control system are examined by simulations in typical handling maneuver scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.