Abstract

Dimensionality serves as an indispensable ingredient in any attempt to formulate low-dimensional physics, and studying the dimensional crossover at a fundamental level is challenging. The purpose of this work is to study the hierarchical dimensional crossovers, namely the crossover from three dimensions (3D) to quasi-2D and then to 1D. Our system consists of a 3D Bose–Einstein condensate trapped in an anisotropic 2D optical lattice characterized by the lattice depths V 1 along the x direction and V 2 along the y direction, respectively, where the hierarchical dimensional crossover is controlled via V 1 and V 2. We analytically derive the ground-state energy, quantum depletion and the superfluid density of the system. Our results demonstrate the 3D-quasi-2D-1D dimensional crossovers in the behavior of quantum fluctuations. Conditions for possible experimental realization of our scenario are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.