Abstract
The biggest feature of the era of big data is that people can easily generate, access, and make use of massive data resources. As one of the most important and popular kind of big data, location big data and its application technology provide users with convenient services. However, improper collection, analysis and publishing of location big data also brings huge crisis of personal privacy disclosure. Spatial decomposition is one of the effective ways to achieve the statistics publication of location big data. In order to make full use of the redundant characteristics of location big data in spatial and temporal distribution, a hierarchical differential privacy hybrid decomposition algorithm is proposed in this paper. In the first layer of decomposition, an adaptive density grid structure is used to cluster the location big data, which not only reduces the uniform assumption errors but also avoids noise errors caused by large number of empty nodes. In order to guide the reasonable decomposition for skewed grids in the second layer, a heuristic quad-tree decomposition algorithm based on regional uniformity is designed, which solved the difficult problem for determining stop condition of the top-down decomposition of two-dimensional space. Comparative experiments show that the hierarchical differential privacy hybrid decomposition algorithm proposed in this paper has good effect in improving the accuracy of regional counting queries. The proposed algorithm has low computational complexity and obvious advantages in the publishing environment of big data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.