Abstract

Recent research in the field of composite materials has shown that it is theoretically possible to produce composite materials with macroscopic mechanical stiffness and loss properties that surpass those of conventional composites. This research explores the possibility of designing and fabricating these composite materials by embedding small volume fractions of negative stiffness inclusions in a continuous host material. Achieving high stiffness and loss from these materials by design, however, is a nontrivial task. This paper presents a hierarchical multiscale material model for these materials, coupled with a set-based, multilevel design approach based on Bayesian network classifiers. Bayesian network classifiers are used to map promising regions of the design space at each hierarchical modeling level, and then the maps are intersected to identify sets of multilevel or multiscale solutions that are likely to provide desirable system performance. Length scales range from the behavior of the structured microscale negative stiffness inclusions to the effective properties of mesoscale composite materials to the performance of an illustrative macroscale component — a vibrating beam coated with the high stiffness, high loss composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call