Abstract
The growth of an interface formed by the hierarchical deposition of particles of unequal size is studied in the framework of a dynamical network generated by a horizontal visibility algorithm. For a deterministic model of the deposition process, the resulting network is scale free with dominant degree exponent γ_{e}=ln3/ln2 and transient exponent γ_{o}=1. An exact calculation of the network diameter and clustering coefficient reveals that the network is scale invariant and inherits the modular hierarchical nature of the deposition process. For the random process, the network remains scale free, where the degree exponent asymptotically converges to γ=3, independent of the system parameters. This result shows that the model is in the class of fractional Gaussian noise through the relation between the degree exponent and the series' Hurst exponent H. Finally, we show through the degree-dependent clustering coefficient C(k) that the modularity remains present in the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.