Abstract

Cardiac disease is the leading cause of death in the US. Accurate heart disease detection is critical to timely medical treatment to save patients’ lives. Routine use of the electrocardiogram (ECG) is the most common method for physicians to assess the cardiac electrical activities and detect possible abnormal conditions. Fully utilizing the ECG data for reliable heart disease detection depends on developing effective analytical models. In this paper, we propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for ECG signal analysis. The first-level model is composed of a Memory-Augmented Deep AutoEncoder with GAN (MadeGAN), which aims to differentiate abnormal signals from normal ECGs for anomaly detection. The second-level learning aims at robust multi-class classification for different arrhythmia identification, which is achieved by integrating the transfer learning technique to transfer knowledge from the first-level learning with the multi-branching architecture to handle the data-lacking and imbalanced data issues. We evaluate the performance of the proposed framework using real-world ECG data from the MIT-BIH arrhythmia database. Experimental results show that our proposed model outperforms existing methods that are commonly used in current practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call