Abstract
Images captured in fog are often affected by scattering. Due to the absorption and scattering of light by aerosols and water droplets, the image quality will be seriously degraded. The specific manifests are brightness decrease, contrast decrease, image blur, and noise increase. In the single-image dehazing method, the image degradation model is essential. In this paper, an effective image degradation model is proposed, in which the hierarchical deconvolution strategy based on transmission map segmentation can effectively improve the accuracy of image restoration. Specifically, the transmission map is obtained by using the dark channel prior (DCP) method, then the transmission histogram is fitted. The next step is to divide the image region according to the fitting results. Furthermore, to more accurately recover images of complex objects with a large depth of field, different levels of inverse convolution are adopted for different regions. Finally, the sub-images of different regions are fused to get the dehazing image. We tested the proposed method using synthetic fog images and natural fog images respectively. The proposed method is compared with eight advanced image dehazing methods on quantitative rating indexes such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), image entropy, natural image quality evaluator (NIQE), and blind/referenceless image spatial quality evaluator (BRISQUE). Both subjective and objective evaluations show that the proposed method achieves competitive results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.