Abstract

Interpretable Machine Learning (IML) aims to establish more transparent decision processes where the human can understand the reason behind the models’ decisions. In this work a methodology to create intrinsically interpretable models based on fuzzy rules is proposed. There is a selection to identify the rule structure by extracting the most significant elements from a decision tree by the principle of justifiable granularity. There are defined hierarchical decision granules and their quality metrics. The proposal is evaluated with ten publicly available datasets for classification tasks. It is shown that through the principle of justified granularity, rule-based models can be greatly compressed through their fuzzy representation, not only without significantly losing performance but even with compression of 40% it manages to exceed the performance of the initial model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.