Abstract

In this work, a hollow double-shelled architecture, based on n-type ZnIn2S4 nanosheet-coated p-type CuS hollow octahedra (CuS@ZnIn2S4 HDSOs), is designed and fabricated as a p-n heterojunction photocatalyst for selective CO2 photoreduction into CH4. The resulting hybrids provide rich active sites and effective charge migration/separation to drive CO2 photoreduction, and meanwhile, CO detachment is delayed to increase the possibility of eight-electron reactions for CH4 production. As expected, the optimized CuS@ZnIn2S4 HDSOs manifest a CH4 yield of 28.0 μmol g-1 h-1 and a boosted CH4 selectivity up to 94.5%. The decorated C60 both possesses high electron affinity and improves catalyst stability and CO2 adsorption ability. Thus, the C60-decorated CuS@ZnIn2S4 HDSOs exhibit the highest CH4 evolution rate of 43.6 μmol g-1 h-1 and 96.5% selectivity. This work provides a rational strategy for designing and fabricating efficient heteroarchitectures for CO2 photoreduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.