Abstract

Decoupling capacitor (decap) has been widely used to effectively reduce dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient (CG) methods, which can be prohibitively expensive for large-scale decap budgeting problems and cannot be easily parallelized. In this paper, we propose a hierarchical cross-entropy based optimization technique which is more efficient and parallel-friendly. Cross-entropy (CE) is an advanced optimization framework which explores the power of rare event probability theory and importance sampling. To achieve the high efficiency, a sensitivity-guided cross-entropy (SCE) algorithm is introduced which integrates CE with a partitioning-based sampling strategy to effectively reduce the solution space in solving the large-scale decap budgeting problems. Compared to improved CG method and conventional CE method, SCE with Latin hypercube sampling method (SCE-LHS) can provide 2× speedups, while achieving up to 25% improvement on power supply noise. To further improve decap optimization solution quality, SCE with sequential importance sampling (SCE-SIS) method is also studied and implemented. Compared to SCE-LHS, in similar runtime, SCE-SIS can lead to 16.8% further reduction on the total power supply noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.