Abstract

High-performance supercapacitors have attracted considerable interests due to their high-power density, fast charge/discharge process and long cycle life. However, the wide application of supercapacitors is limited by their low energy density. Herein, the hierarchical core–shell structured NiCoP@NiS nanoarrays have been successfully synthesized by using the vertically grown nickel–cobalt bimetallic phosphide (NiCoP) nanowire as the core and the nickel sulfide (NiS) by electrodeposition as the shell. As the “super channel” for electron transfer, the NiCoP core is coupled with the NiS shell to promote rapid diffusion of electrons and improve cycle stability of the electrode. Consequently, the optimized NiCoP@NiS nanoarrays display an extremely good specific capacitance (2128F g-1 at 1 A g-1) and a superior long cycle life (the capacitance retention of 90.36 % after 10,000 cycles). A hybrid supercapacitor (HSC) has been assembled using the NiCoP@NiS as the positive and the activated carbon (AC) as the negative, which displays a superior energy density of 30.47 Wh kg−1 at a remarkable power energy of 800 W kg−1. This study shows that the prepared hierarchical core–shell structured nanoarrays have great prospects as a novel electrode material in energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.