Abstract

Traditional machine learning methods suffer from severe overfitting in EEG-based emotion reading. In this paper, we use hierarchical convolutional neural network (HCNN) to classify the positive, neutral, and negative emotion states. We organize differential entropy features from different channels as two-dimensional maps to train the HCNNs. This approach maintains information in the spatial topology of electrodes. We use stacked autoencoder (SAE), SVM, and KNN as competing methods. HCNN yields the highest accuracy, and SAE is slightly inferior. Both of them show absolute advantage over traditional shallow models including SVM and KNN. We confirm that the high-frequency wave bands Beta and Gamma are the most suitable bands for emotion reading. We visualize the hidden layers of HCNNs to investigate the feature transformation flow along the hierarchical structure. Benefiting from the strong representational learning capacity in the two-dimensional space, HCNN is efficient in emotion recognition especially on Beta and Gamma waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.