Abstract

Regenerative braking is a key technology for hybrid electric vehicles (HEVs) to improve fuel economy, and it is a multi-objective control problem, which should ensure vehicle braking safety, recover more energy, and protect components from aging. As is known, battery is the most sensitive component in hybrid powertrain, so a large recover current can cause damage to the battery and reduce its life. However, the damage to is usually ignored in regenerative braking. Therefore, this paper proposed a hierarchical control strategy with battery aging consideration to solve the problem. In the up-level controller, the control targets are to recover more energy and minimize aging of the battery in general braking mode, and ensuring the vehicle braking safety in emergency braking mode at the same time. The low-level controller receives the commands of the up-level controller, and controls the pneumatic braking system and the electric motor (EM). The constraints of maximum EM torque and maximum battery charging power are set to protect the EM and the battery. Simulation tests are designed to indicate the effects of regenerative braking on battery aging and the control effectiveness of the proposed method, and controller-in-the-loop tests are carried out to verify the real-time calculation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.