Abstract
This paper addresses the control design problem of stabilizing both joint-angle and spring-torque control objectives in robots with series elastic actuators (SEAs). The proposed method is a hierarchical control scheme which employs rapidly exponentially stabilizing control Lyapunov functions (RES-CLFs) to obtain controllers for each tier in the scheme. The main result of the paper demonstrates that for a proper choice of controller parameters, applying the proposed controller to the SEA control system results in simultaneous exponential stability of the joint-angle and the spring-torque control objectives. Furthermore, it is shown that for a locally exponentially stable periodic orbit in the zero dynamics of the control system considered, the controller renders a corresponding orbit in the full SEA dynamics locally exponentially stable.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.