Abstract

Abstract We propose a hierarchical FTC (Fault Tolerant Control) scheme for trajectory tracking by a quadcopter system under stuck actuator fault and actuator saturation. Both the FDI (Fault Detection and Isolation) and control reconfiguration modules are implemented at the low-level associated with the rotation dynamics through a NMPC (Nonlinear Model Predictive Control) strategy. The uncontrolled (when under fault) yaw torque is predicted and compensated by the NMPC. It is shown that the overall control scheme succeeds in maintaining trajectory tracking for various fault events (both in the sense of having various stuck values and in the sense of changing the actuator under fault).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.