Abstract

DC distribution is now becoming the major trend of future mobile power systems, such as more-electric aircrafts and ships. As dc distribution has different nature to the conventional ac system, a new design of well-structured control and management methods will be mandatory. In this paper, a shipboard power system with dc distribution and energy storage system (ESS) is picked as the study case. To meet the requirement of control and management of such a large-scale mobile power system, a hierarchical control design is proposed in this paper. In order to fully exploit the benefit of the ESS, as well as to overcome the limitation in controllability, a novel inverse-droop control method is proposed, in which the power sharing is according to the source characteristic, instead of their power rating. A frequency-division method is also proposed as an extension to the inverse-droop method for enabling a hybrid ESS and its autonomous operation. On the basis of the proposed methods, the control methods for management and voltage restoration levels are also proposed to establish a comprehensive control solution. Real-time simulations are carried out to validate the performance of the proposed control design under different operating conditions. When compared to more conventional droop-based approaches, the new proposal shows enhancement in efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call