Abstract
Zn-based aqueous batteries (ZABs) have been regarded as promising candidates for safe and large-scale energy storage in the "post-Li" era. However, kinetics and stability problems of Zn capture cannot be concomitantly regulated, especially at high rates and loadings. Herein, a hierarchical confinement strategy is proposed to design zincophilic and spatial traps through a host of porous Co-embedded carbon cages (denoted as CoCC). The zincophilic Co sites act as preferred nucleation sites with low nucleation barriers (within 0.5 mA h cm-2), and the carbon cage can further spatially confine Zn deposition (within 5.0 mA h cm-2). Theoretical simulations and in situ/ex situ structural observations reveal the hierarchical spatial confinement by the elaborated all-in-one network (within 12 mA h cm-2). Consequently, the elaborate strategy enables a dendrite-free behavior with excellent kinetics (low overpotential of ca. 65 mV at a high rate of 20 mA cm-2) and stable cycle life (over 800 cycles), pushing forward the next-generation high-performance ZABs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.