Abstract
Symbolic data is aggregated from bigger traditional datasets in order to hide entry specific details and to enable analysing large amounts of data, like big data, which would otherwise not be possible. Symbolic data may appear in many different but complex forms like intervals and histograms. Identifying patterns and finding similarities between objects is one of the most fundamental tasks of data mining. In order to accurately cluster these sophisticated data types, usual methods are not enough. Throughout the years different approaches have been proposed but they mainly concentrate on the “macroscopic” similarities between objects. Distributional data, for example symbolic data, has been aggregated from sets of large data and thus even the smallest microscopic differences and similarities become extremely important. In this paper a method is proposed for clustering distributional data based on these microscopic similarities by using quantile values. Having multiple points for comparison enables to identify similarities in small sections of distribution while producing more adequate hierarchical concepts. Proposed algorithm, called microscopic hierarchical conceptual clustering, has a monotone property and has been found to produce more adequate conceptual clusters during experimentation. Furthermore, thanks to the usage of quantiles, this algorithm allows us to compare different types of symbolic data easily without any additional complexity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.