Abstract

The design and discovery of novel porous materials that can efficiently capture volatile organic compounds (VOCs) from air are critical to address one of the most important challenges of our world, air pollution. In this work, we studied a recently introduced metal-organic framework (MOF) database, namely, quantum MOF (QMOF) database, to unlock the potential of both experimentally synthesized and hypothetically generated structures for adsorption-based n-butane (C4H10) capture from air. Configurational Bias Monte Carlo (CBMC) simulations were used to study the adsorption of a quaternary gas mixture of N2, O2, Ar, and C4H10 in QMOFs for two different processes, pressure swing adsorption (PSA) and vacuum-swing adsorption (VSA). Several adsorbent performance evaluation metrics, such as C4H10 selectivity, working capacity, the adsorbent performance score, and percent regenerability, were used to identify the best adsorbent candidates, which were then further studied by molecular simulations for C4H10 capture from a more realistic seven-component air mixture consisting of N2, O2, Ar, C4H10, C3H8, C3H6, and C2H6. Results showed that the top five QMOFs have C4H10 selectivities between 6.3 × 103 and 9 × 103 (3.8 × 103 and 5 × 103) at 1 bar (10 bar). Detailed analysis of the structure-performance relations showed that low/mediocre porosity (0.4-0.6) and narrow pore sizes (6-9 Å) of QMOFs lead to high C4H10 selectivities. Radial distribution function analyses of the top materials revealed that C4H10 molecules tend to confine close to the organic parts of MOFs. Our results provided the first information in the literature about the VOC capture potential of a large variety and number of MOFs, which will be useful to direct the experimental efforts to the most promising adsorbent materials for C4H10 capture from air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.