Abstract

How to achieve high-speed directional migration and separation of photogenerated carriers at heterointerfaces is still an important factor restricting efficient photocatalytic reactions. Herein, hierarchical columnar ZnIn2S4/BiVO4 (ZIS/BVO) Z-scheme composite with photogenerated carriers highway in heterogeneous interface are designed by an in situ technique. Ultrathin ZIS nanosheets are uniformly grown upright on the surface of mulberry-like BVO pillars. The confined built-in electric field and Z-scheme heterojunction in ZIS/BVO are verified in detailed by synchronous illumination X-ray photoelectron spectroscopy, theoretical calculation, electron spin resonance spectroscopy, and high-resolution TEM. The photogenerated electrons in the conduction band (CB) of BVO migrate to the valence band (VB) of ZIS through heterojunction, whereas holes in the VB of BVO and electrons in the CB of ZIS maintain the original high redox capability. These holes and electrons with high redox capability react with H2O and O2 to generate more OH and O2−, respectively, achieving enhanced photocatalytic mineralization antibiotic properties. The mineralization rate of antibiotics in the optimized ZIS/BVO material are 4.4 and 1.8 times higher than that of pure BVO and ZIS, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.