Abstract

Nano-sized cobalt oxide decorated nitrogen-doped graphene oxide (Co3O4@NGO) composite was produced by a feasible and cost-effective hydrothermal route for electrochemical supercapacitors and gas sensor applications. The composite materials formation was ascertained by Raman spectroscopy, X-ray diffraction, and X-ray photo electron spectroscopy analyses. Field emission scanning electron microscopy (FE-SEM) and field emission transmission electron microscopy (FE-TEM) results explored the controlled nanoscale-sized sheet-like morphology for the prepared composite materials. Electrochemical storage properties were studied by cyclic voltammetry (CV), galvanostatic charge–discharge process (GCD), and electrochemical impedance spectroscopy analyses using three-electrode configuration with 3 M KOH electrolyte. The observed results showed ~466 F/g specific capacitance at a current density of 1 A/g for Co3O4@NGO composite structure with the capacity retention of 96 % after 5000 cycles. Further, the synthesized Co3O4@NGO composite revealed improved detection response, cyclability, and linearity for dimethyl methyl phosphonate vapor gas sensing. The synthesized composite also demonstrated excellent selectivity, stability, sensitivity, and rapid response time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.