Abstract

Recently, much attention has been paid on the nanomaterial-based artificial enzymes due to their tunable catalytic activity, high stability and low cost compared to the natural enzymes. Different from the peroxidase mimics which have been studied for several decades, nanomaterials with oxidase-like property are burgeoning in the recent years. In this paper, hierarchical carbon nanofibers (CNFs)/MnCo2O4.5 nanofibers as efficient oxidase mimics are reported. The products are synthesized by an electrospinning technique and an electrochemcial deposition process in which the CNFs are used as the working electrode where MnCo2O4.5 nanosheets deposit on. The resulting binary metal oxide-based nanocomposites exhibit a good oxidase-like activity toward the oxidations of 3,3′,5,5′tetramethylbenzi-dine (TMB), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) salt and o-phenylenediamine (OPD) without exogenous addition of H2O2. The system of CNFs/MnCo2O4.5-TMB can be used as a candidate to detect sulfite and ascorbic acid via a colorimetric method with a high sensitivity. This work provides the efficient utilization and potential applications of binary metal oxide-based nanocomposites with oxidase activities in biosensors and other biotechnologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call