Abstract
Hierarchical clustering algorithms are mainly classified into agglomerative methods (bottom-up methods) and divisive methods (top-down methods), based on how the hierarchical dendrogram is formed. This chapter overviews the principles of hierarchical clustering in terms of hierarchy strategies, that is bottom-up or top-down, which correspond to agglomerative methods or divisive methods. There are many different definitions of the distance between clusters, which lead to different clustering algorithms/linkage techniques algorithms, namely single linkage, complete linkage, average linkage and Ward's linkage. There are two divisive algorithms, namely monothetic analysis (MONA) and divisive analysis (DIANA). DIANA splits up a cluster into two smaller ones, until finally all clusters contain only a single element. The chapter presents an example to illustrate the DIANA algorithm. MONA considers only binary variables, corresponding to the presence or absence of some attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.