Abstract
Some natural phenomena with areal/lattice data structures include extreme values or outliers. In such situations, the assumption of Gaussianity for the random field may not be reasonable, and no Gaussian transformation can be found because they exhibit heavy tails. A non-Gaussian stable random field, which is heavy-tailed, could be a more appropriate choice in these cases. This article introduces a sub-Gaussian α-stable (SGαS) random field for spatial analysis of multivariate areal data using a multivariate conditional autoregressive model. We, specifically, focus on the spatial clustering problem of such areal data. To address it, we develop methods that work based on adjacency constraints. To group the data, we offer an adjacency-constrained hierarchical agglomerative clustering (HAC) technique that considers both spatial and non-spatial attributes existing in the multivariate areal data. The proposed clustering algorithm is developed based on spatial adjacency constraint criteria incorporated into the HAC technique. We employed the developed algorithm to group Luxembourg communes based on simulated areal data from the SGαS distributions and French cities along the Gironde estuary based on the estuary areal dataset. We compare the results of the proposed method with the mentioned adjacency criteria, various dissimilarity, and linkages measures in clustering these two datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.