Abstract

Finding a set of nested partitions of a dataset is useful to uncover relevant structure at different scales, and is often dealt with a data-dependent methodology. In this paper, we introduce a general two-step methodology for model-based hierarchical clustering. Considering the integrated classification likelihood criterion as an objective function, this work applies to every discrete latent variable models (DLVMs) where this quantity is tractable. The first step of the methodology involves maximizing the criterion with respect to the partition. Addressing the known problem of sub-optimal local maxima found by greedy hill climbing heuristics, we introduce a new hybrid algorithm based on a genetic algorithm efficiently exploring the space of solutions. The resulting algorithm carefully combines and merges different solutions, and allows the joint inference of the number $K$ of clusters as well as the clusters themselves. Starting from this natural partition, the second step of the methodology is based on a bottom-up greedy procedure to extract a hierarchy of clusters. In a Bayesian context, this is achieved by considering the Dirichlet cluster proportion prior parameter $\alpha$ as a regularization term controlling the granularity of the clustering. A new approximation of the criterion is derived as a log-linear function of $\alpha$, enabling a simple functional form of the merge decision criterion. This second step allows the exploration of the clustering at coarser scales. The proposed approach is compared with existing strategies on simulated as well as real settings, and its results are shown to be particularly relevant. A reference implementation of this work is available in the R package greed accompanying the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.