Abstract
Ortholog identification is a crucial first step in comparative genomics. Here, we present a rapid method of ortholog grouping which is effective enough to allow the comparison of many genomes simultaneously. The method takes as input all-against-all similarity data and classifies genes based on the traditional hierarchical clustering algorithm UPGMA. In the course of clustering, the method detects domain fusion or fission events, and splits clusters into domains if required. The subsequent procedure splits the resulting trees such that intra-species paralogous genes are divided into different groups so as to create plausible orthologous groups. As a result, the procedure can split genes into the domains minimally required for ortholog grouping. The procedure, named DomClust, was tested using the COG database as a reference. When comparing several clustering algorithms combined with the conventional bidirectional best-hit (BBH) criterion, we found that our method generally showed better agreement with the COG classification. By comparing the clustering results generated from datasets of different releases, we also found that our method showed relatively good stability in comparison to the BBH-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.