Abstract
A nonparametric algorithm is presented for the hierarchical partitioning of the feature space. The algorithm is based on the concept of average mutual information, and is suitable for multifeature multicategory pattern recognition problems. The algorithm generates an efficient partitioning tree for specified probability of error by maximizing the amount of average mutual information gain at each partitioning step. A confidence bound expression is presented for the resulting classifier. Three examples, including one of handprinted numeral recognition, are presented to demonstrate the effectiveness of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.