Abstract

Designing efficient nonprecious catalysts with pH-universal hydrogen evolution reaction (HER) performance is of importance for boosting water splitting. Herein, a self-template strategy based on Ni-Co-glycerates is developed to prepare bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays. The highly porous core-shell structure gives rise to affluent mass transfer channels and availably prevents the aggregation of nanosheets, while the ultrathin nanosheets are favorable for producing abundant active sites. Besides, the produced CoP/NiCoP heterostructure in the bimetallic Ni-Co-P catalyst has excellent HER performance in a wide pH range. The as-prepared catalyst shows low potentials of 90, 157, and 121 mV to deliver a current density of 10 mA cm-2 in 0.5 M H2SO4, 0.5 M PBS, and 1 M KOH solution, respectively. Meanwhile, negligible overpotential decay is achieved in the polarization curves after a long-term stability determination. This work supplies a promising strategy for developing pH-universal HER electrocatalysts based on solid-state metal alkoxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call