Abstract

Animal behavior is organized into nested temporal patterns that span multiple timescales. This behavior hierarchy is believed to arise from a hierarchical neural architecture: Neurons near the top of the hierarchy are involved in planning, selecting, initiating, and maintaining motor programs, whereas those near the bottom of the hierarchy act in concert to produce fine spatiotemporal motor activity. In Caenorhabditis elegans, behavior on a long timescale emerges from ordered and flexible transitions between different behavioral states, such as forward, reversal, and turn. On a short timescale, different parts of the animal body coordinate fast rhythmic bending sequences to produce directional movements. Here, we show that Sublateral Anterior A (SAA), a class of interneurons that enable cross-communication between dorsal and ventral head motor neurons, play a dual role in shaping behavioral dynamics on different timescales. On a short timescale, SAA regulate and stabilize rhythmic bending activity during forward movements. On a long timescale, the same neurons suppress spontaneous reversals and facilitate reversal termination by inhibiting Ring Interneuron M (RIM), an integrating neuron that helps maintain a behavioral state. These results suggest that feedback from a lower-level cell assembly to a higher-level command center is essential for bridging behavioral dynamics at different levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.