Abstract
We present a hierarchical Bayesian modelling (HBM) framework for estimating riverine fish population size from successive removal data via electrofishing. It is applied to the estimation of the population of Atlantic salmon (Salmo salar) juveniles in the Oir River (France). The data set consists of 10 sampling sites sampled by one or two removals over a period of 20 years (1986–2005). We develop and contrast four models to assess the effect of temporal variations and habitat type on the density of fish and the probability of capture. The Bayes factor and the deviance information criterion are used to compare these models. The most credible and parsimonious model is the one that accounts for the effects of the years and the habitat type on the density of fish. It is used to extrapolate the population size in the entire river reach. This paper illustrates that HBM successfully accommodates large but sparse data sets containing poorly informative data for some units. Its conditional structure enables it to borrow strength from data-rich to data-poor units, thus improving the estimations. Predictions of the population size of the entire river reach can be derived, while accounting for all sources of uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.