Abstract

This study analyses the joint effects of the two transmission routes of cholera on the space‐time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint analysis of nonlinear effects of continuous covariates, spatially structured variation, and unstructured heterogeneity. Proximity to primary case locations and population density serve as continuous covariates. Reference to communities is modelled as a spatial effect. The study applied to the Kumasi area in Ghana shows that communities proximal to primary case locations are infected relatively early during the epidemics, with more remote communities infected at later dates. Similarly, more populous communities are infected relatively early and less populous communities at later dates. The rate of infection increases almost linearly with population density. A non systematic relation occurs between the rate of infection and proximity to primary case locations. It is discussed how these findings could serve as significant information to help health planners and policy makers in making effective decisions to limit cholera epidemics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.