Abstract
The augmentation of categorical outcomes with underlying Gaussian variables in bivariate generalized mixed effects models has facilitated the joint modeling of continuous and binary response variables. These models typically assume that random effects and residual effects (co)variances are homogeneous across all clusters and subjects, respectively. Motivated by conflicting evidence about the association between performance outcomes in dairy production systems, we consider the situation where these (co)variance parameters may themselves be functions of systematic and/or random effects. We present a hierarchical Bayesian extension of bivariate generalized linear models whereby functions of the (co)variance matrices are specified as linear combinations of fixed and random effects following a square-root-free Cholesky reparameterization that ensures necessary positive semidefinite constraints. We test the proposed model by simulation and apply it to the analysis of a dairy cattle data set in which the random herd-level and residual cow-level effects (co)variances between a continuous production trait and binary reproduction trait are modeled as functions of fixed management effects and random cluster effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.