Abstract

When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.