Abstract
AbstractBayesian inversion is commonly applied to quantify uncertainty of hydrological variables. However, Bayesian inversion is usually focused on spatial hydrological properties instead of hyperparameters or non‐gridded physical global variables. In this paper, we present a hierarchical Bayesian framework to quantify uncertainty of both global and spatial variables. We estimate first the posterior of global variables and then hierarchically estimate the posterior of the spatial field. We propose a machine learning‐based inversion method to estimate the joint distribution of data and global variables directly without introducing a statistical likelihood. We also propose a new local dimension reduction method: local principal component analysis (local PCA) to update large‐scale spatial fields with local data more efficiently. We illustrate the hierarchical Bayesian formulation with three case studies: one with a linear forward model (volume averaging inversion) and two with non‐linear forward models (pumping tests and hydraulic head measurements), including a 3D case. Results show that quantifying global variables uncertainty is critical for assessing uncertainty on predictions. We show how the local PCA approach accelerates the inversion process. Furthermore, we provide an open‐source Python package (https://github.com/lijingwang/hierarchicalBayes.git) on the hierarchical Bayesian framework including three case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.