Abstract

Microbial infections originating from medical care facilities are raising serious concerns across the globe. Therefore, nanotechnology-derived nanostructures have been investigated and explored due to their promising characteristics. In view of this, silver-based antimicrobial hydrogels as an alternative to antibiotic-based creams could play a crucial role in combating such infections. Toward this goal, we report a simple method for the synthesis and assembly of silver nanoparticles in a biopolymer physical gel derived from Abroma augusta plant in imparting antimicrobial properties against nosocomial pathogens. Synthesized silver nanoparticles (diameter, 30 ± 10 nm) were uniformly distributed inside the hydrogel. Such synthesized hydrogel assembly of silver nanoparticles dispersed in the biopolymer matrix exhibited hemocompatibility and antimicrobial and antibiofilm characteristics against nosocomial pathogens. The developed hydrogel as a surface coating offers reduced hardness and modulus value, thereby minimizing the brittleness tendency of the gel in the dried state. Hence, we believe that the hierarchical assembly of our hydrogel owing to its functional activity, host toxicity, and stability could possibly be used as an antimicrobial ointment for bacterial infection control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.