Abstract
The mechanism of formation of fibrillar collagen with a banding periodicity much greater than the 67 nm of native collagen, i.e. the so-called fibrous long spacing (FLS) collagen, has been speculated upon, but has not been previously studied experimentally from a detailed structural perspective. In vitro, such fibrils, with banding periodicity of approximately 270 nm, may be produced by dialysis of an acidic solution of type I collagen and alpha(1)-acid glycoprotein against deionized water. FLS collagen assembly was investigated by visualization of assembly intermediates that were formed during the course of dialysis using atomic force microscopy. Below pH 4, thin, curly nonbanded fibrils were formed. When the dialysis solution reached approximately pH 4, thin, filamentous structures that showed protrusions spaced at approximately 270 nm were seen. As the pH increased, these protofibrils appeared to associate loosely into larger fibrils with clear approximately 270 nm banding which increased in diameter and compactness, such that by approximately pH 4.6, mature FLS collagen fibrils begin to be observed with increasing frequency. These results suggest that there are aspects of a stepwise process in the formation of FLS collagen, and that the banding pattern arises quite early and very specifically in this process. It is proposed that typical 4D-period staggered microfibril subunits assemble laterally with minimal stagger between adjacent fibrils. alpha(1)-Acid glycoprotein presumably promotes this otherwise abnormal lateral assembly over native-type self-assembly. Cocoon-like fibrils, which are hundreds of nanometers in diameter and 10-20 microm in length, were found to coexist with mature FLS fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Matrix biology : journal of the International Society for Matrix Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.