Abstract
Charge carriers separation and surface catalytic reactions are two crucial steps in photocatalytic processes; the rational design of photocatalysts by taking these two factors into consideration is thus of great importance to advance the associated performance. Herein, a self‐sacrificial strategy is developed to fabricate a ternary nanostructure photocatalyst, forming a hierarchical architecture of In(OH)3 nanocube decorated NiS‐ZnIn2S4 (ZIS) hybrid nanosheets (ZIS/In(OH)3‐NiS). Such a unique structure provides the hybrid photocatalyst with a facilitated path for efficiently separating the charge carrier and abundant sites for catalytic reactions. Systematic characterizations that reveal the strong electronic interactions in the ternary ZIS/In(OH)3‐NiS leads to fast electron transfer from excited ZnIn2S4 to NiS nanosheets, which provide catalytic sites for hydrogen evolution reaction. The comprehensive photocatalysis studies demonstrate that ZnIn2S4/In(OH)3‐NiS exhibits ultrahigh photocatalytic activity toward hydrogen generation with a high rate of 7010 μmol g−1 h−1, which ranks as one of the highest among ZnIn2S4‐based photocatalysts reported so far. This work provides an attractive and effective way to develop high‐activity photocatalysts without using precious metal cocatalysts. The investigation brings us one step closer to understanding the structure‐determining properties of nanohybrid architecture, and provides a valuable reference to develop cost‐effective and practical photocatalysts for a variety of applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.