Abstract
There has been growing interest in the photoelectrochemical conversion of carbon dioxide (a potent greenhouse gas and a contributor to global climate change) to useful carbon-based fuels or chemicals. The reaction products are of potential importance to energy technology, food research, medical applications and fabrication of plastic materials. Given the fact that the CO2 molecule is very stable, its electroreduction processes are characterized by large overpotentials. It is often postulated that, during electroreduction, the rate limiting step is the protonation of the adsorbed CO product to form the CHO adsorbate. In this respect, the proton availability and its mobility at the photo(electro)chemical interface has to be addressed. On the other hand, competition between such parallel processes as hydrogen evolution and carbon dioxide reduction has also to be considered. Recently, we have concentrated on the development of hybrid materials by utilizing combination of metal oxide semiconductors thus capable of effective photoelectrochemical reduction of carbon dioxide. For example, the combination of titanium (IV) oxide and copper (I) oxide has been considered before and after sunlight illumination. Application of the hybrid system composed of both above-mentioned oxides resulted in high current densities originating from photoelectrochemical reduction of carbon dioxide mostly to methanol (CH3OH) as demonstrated upon identification of final products. Among important issue is intentional stabilization, activation, and functionalization of the mixed-metal-oxide-based photoelectrochemcal interface toward better long-term performance and selectivity production of small organic molecules (C1-C4) and other chemicals. In this respect, ultra-thin films of conducting polymers (simple or polyoxometallate-derivatized) and supramolecular complexes (with nitrogen containing ligands and certain transition metal sites), sub-monolayers of metals (Cu, Au), networks of noble metal (Au, Ag) nanoparticles or layers of robust bacterial biofilms have been considered. The photo-biocathode with Cu-containing enzyme has induced the reduction of not only oxygen but carbon dioxide as well, under illuminations with photon energies higher than silicon band gap. In the presentation, special attention will be paid to mechanistic aspects of electroreduction of carbon dioxide, fabrication and characterization of highly selective and durable semiconductor photoelectrode materials and to importance of the reaction conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.