Abstract

AbstractA high‐efficiency separation of oil and water can be achieved by using specially designed amphiphilic porous membrane. However, the preparation of such membranes often involves complex multistep chemical processes. Herein, we report an amphiphilic composite membrane (polystyrene [PS]/bacterial cellulose [BC] membrane) consisting of hydrophobic recycled PS and hydrophilic BC, fabricated by a facile in situ fermentation process. Not only these membranes exhibit a combination of contrasting wettability but also comprise of a hierarchical network of microfibers and nanofibers, which makes them ideal for oil–water separation. The structural and morphological properties of as‐produced BC, recycled PS membrane, and PS/BC composite membrane were studied by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The ability of the membranes to separate oil and water was tested by using an emulsion of hexane‐in‐water as the feed and the collected filtrates were characterized by optical microscopy and UV–Vis spectroscopy. PS membranes were unable to separate oil and water, while the PS/BC membrane efficiently separated water from the emulsion. PS/BC composite membranes showed a high water recovery of more than 90%, against only 57% recovery shown by BC. Mechanisms of oil–water separation for each membrane are discussed. The reusability of the PS/BC composite membrane was also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.