Abstract

The component-by-component (CBC) algorithm is a method for constructing good generating vectors for lattice rules for the efficient computation of high-dimensional integrals in the “weighted” function space setting introduced by Sloan and Woźniakowski. The “weights” that define such spaces are needed as inputs into the CBC algorithm, and so a natural question is, for a given problem how does one choose the weights? This paper introduces two new CBC algorithms which, given bounds on the mixed first derivatives of the integrand, produce a randomly shifted lattice rule with a guaranteed bound on the root-mean-square error. This alleviates the need for the user to specify the weights. We deal with “product weights” and “product and order dependent (POD) weights”. Numerical tables compare the two algorithms under various assumed bounds on the mixed first derivatives, and provide rigorous upper bounds on the root-mean-square integration error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.